Vai al contenuto principale
Oggetto:
Oggetto:

Introduzione alla teoria dei campi

Oggetto:

Introduction to field theory

Oggetto:

Anno accademico 2020/2021

Codice dell'attività didattica
FIS0152
Docente
Prof. Mariaelena Boglione (Titolare del corso)
Corso di studi
008510-101 Laurea Magistrale in Fisica ind. Fisica Nucleare e Subnucleare e Biomedica
008510-102 Laurea Magistrale in Fisica ind. Astrofisica e Fisica Teorica
Anno
1° anno
Periodo didattico
Da definire
Tipologia
B=Caratterizzante
Crediti/Valenza
6
SSD dell'attività didattica
FIS/02 - fisica teorica, modelli e metodi matematici
Modalità di erogazione
Tradizionale
Lingua di insegnamento
Italiano
Modalità di frequenza
Facoltativa
Tipologia d'esame
Scritto ed orale
Prerequisiti
Corsi caratterizzanti di ambito teorico della LT, in particolare Meccanica Quantistica, Meccanica Analitica, Relatività Speciale, Metodi Matematici della Fisica
Theory courses of the Bachelor course of studies. In particular: Quantum Mechanics, Analytical Mechanics, Special Relativity, Mathematical Methods for Physics
Propedeutico a
Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

Comprensione delle problematiche connesse all'estensione relativistica della meccanica quantistica, acquisizione degli strumenti necessari allo studio della teoria quantistica dei campi.

Understanding the relativistic extension of Quantum Mechanics and related problems and of the techniques necessary to the development of quantum field theory.

Oggetto:

Risultati dell'apprendimento attesi

Conoscenza e capacita' di comprensione (knowledge and understanding)

Conoscenze approfondite della meccanica quantistica, della teoria classica dei campi, degli strumenti matematici avanzati e di tecniche di calcolo simbolico.

Dimestichezza con le principali rappresentazioni del gruppo di Lorentz e con le principali equazioni d'onda relativistiche (Klein-Gordon e Dirac). Comprensione delle correzioni relativistiche allo spettro dell'atomo di idrogeno, e dell'origine dell'antimateria. Capacità di trovare le equazioni del moto e le correnti conservate per teorie di campo elementari.

Capacita' di applicare conoscenza e comprensione (applying knowledge and understanding)

Capacita’ di comprendere e padroneggiare metodi matematici e numerici opportuni nella risoluzione di problemi complessi.

 Capacità di svolgere calcoli elementari con matrici gamma e di risolvere semplici problemi riguardanti le soluzioni libere dell'equazione di Dirac.

Knowledge and understanding

Detailed knowledge of Quantum Mechanics, Classical field theory, advanced mathematical methods and symbolyc calculus. Knowledge of the main representations of Lorentz Group and of the main relativistic wave equations (Klein-Gordon and Dirac). Understanding of relativistic corrections to the energy spectrum od Hydrogen atom and of the origin of antimatter. Capability of deriving equations of motion and conserved currents for elementary field theories.

Applying knowledge and understanding

Understanding and mastering mathematical and numerical methods appropriate in solving complex problems.

Capability of performing elementary calculations with Gamma matrices and of solving simple problems concerning the solutions of the free Dirac equation.

Oggetto:

Modalità di insegnamento

Lezioni frontali, possibilmente svolte in presenza con l'ausilio della lavagna. Le lezioni verranno video-registrate e saranno fruibili come didattica a distanza attraverso le piattaforme Campusnet e Moodle. 

https://unito.webex.com/meet/mariaelena.boglione

 

 

 

Lectures will take place in a classroom with the help of a blackboard. Videos of the lectures will be made available on-line to the students registered to the course.

https://unito.webex.com/meet/mariaelena.boglione

 

 

Oggetto:

Modalità di verifica dell'apprendimento

Viste le restrizioni attualmente in vigore per l'emergenza Covid, gli esami si svolgeranno a distanza ed in forma di solo colloquio orale, utilizzando la piattaforma Webex .

For this year, given the emergency regime due to the Covid pandemia, the exam will consist in an oral test. It will take place on-line, using the Webex platform.

Oggetto:

Attività di supporto

Oggetto:

Programma

  • Introduzione: difficoltà legate all'estensione relativistica della Meccanica Quantistica e  necessità di introdurre una teoria di campo.
  • Trasformazioni del gruppo di Lorentz e di Poincaré.
  • Comportamento di un campo locale per trasformazioni del gruppo di Poincaré
  • Proprietà dell'Azione per campi scalari, spinoriali e vettoriali
  • Teorema di Noether
  • Costruzione dell'Azione relativa a campi scalari e spinoriali e derivazione delle relative equazioni del moto.
  • Equazione di Dirac e sua interpretazione. Covarianza dell'eq. di Dirac.
  • Comportamento dell'eq. di Dirac sotto trasformazioni di parità. Forme bilineari.
  • Importanti identità per prodotti di matrici gamma e tracce. Correnti di Noether.
  • Soluzioni libere dell'equazione di Dirac e loro interpretazione fisica.
  • Spinori di Weyl. Operatori di chiralità, elicità e spin.
  • Quantizzazione canonica del campo scalare e del campo scalare carico (complesso).
  • Interpretazione fisica di particella e antiparticella.
  • Conservazione della carica elettrica totale.
  • Quantizzazione canonica del campo di spin 1/2.
  • Teoria del Propagatore: Considerazioni sull'evoluzione temporale dell'operatore di campo e sulla causalità. Propagatore del campo di Klein-Gordon - Propagatore del Campo di Dirac.
  • Richiami sul Campo Elettromagnetico ed Equazioni di Maxwell
  • Elettromagnetismo massivo ed equazione di Proca
  • Quantizzazione del campo elettromagnetico massivo - Vettori di polarizzazione 
  • Quantizzazione del campo elettromagnetico massless
  • Interazione di una particella carica in campo elettromagnetico. Teorie di gauge e campo di gauge. Definizione di derivata coviariante. Prescrizione di accoppiamento minimale.
  • Simmetrie discrete: trasformazione di parità, inversione temporale, coniugazione di carica.



Testi consigliati e bibliografia

Oggetto:

Mark Srednicki, Quantum Field Theory

Pierre Ramond, Quantum Field Theory: a modern primer

Michio Kaku, Quantum Field Theory: a modern introduction

Lancaster and Blundell, Quantum Field Theory for the gifted amateur

George Sterman, Quantum Field Theory

E. Barone, Relatività, Bollati Boringhieri;

C. Itzykson and J.B. Zuber, ''Quantum Field Theory'', New York, Usa: Mc graw-hill (1980)

 

Mark Srednicki, Quantum Field Theory

Pierre Ramond, Quantum Field Theory: a modern primer

Michio Kaku, Quantum Field Theory: a modern introduction

Lancaster and Blundell, Quantum Field Theory for the gifted amateur

George Sterman, Quantum Field Theory

E. Barone, Relatività, Bollati Boringhieri;

C. Itzykson and J.B. Zuber, ''Quantum Field Theory'', New York, Usa: Mc graw-hill (1980)



Oggetto:

Orario lezioni

GiorniOreAula
Martedì11:00 - 13:00Aula A Dipartimento di Fisica
Mercoledì11:00 - 13:00Aula A Dipartimento di Fisica
Giovedì11:00 - 13:00Aula A Dipartimento di Fisica

Lezioni: dal 22/09/2020 al 20/11/2020

Oggetto:

Note

Propedeuticità: Meccanica Analitica e Statistica, Meccanica Quantistica I e II. Modalità di frequenza: lezioni frontali, frequenza non obbligatoria

Suggested prerequisites: Analytical and Statistical Mechanics, Quantum Mechanics I and II. Attendance modality: classroom taught lessons, attendance is not mandatory.

Oggetto:
Ultimo aggiornamento: 20/11/2020 20:34
Location: https://www.fisicamagistrale.unito.it/robots.html
Non cliccare qui!